DANIEL BERNOULLI

Daniel Bernoulli
(1700/01/29 – 1782/03/17)

Daniel Bernoulli

Científico suizo

Nació el 29 de enero de 1700 en Groningen, Holanda. Hijo de Jean Bernoulli y sobrino de Jacques Bernoulli, dos investigadores que hicieron aportaciones importantes al primitivo desarrollo del cálculo.

Aunque consiguió un título médico en 1721, Daniel y su hermano Nicolás fueron invitados a trabajar en la Academia de Ciencias de St. Petersburgo, él como profesor de matemáticas. Fue allí donde entró en colaboración con Euler.

En 1731 comenzó a extender sus investigaciones para cubrir problemas de la vida y de la estadística de la salud. Dos años después regresó a Basilea donde enseñó anatomía, botánica, filosofía y física. Como trabajo más importante se destaca el realizado en hidrodinámica que consideraba las propiedades más importantes del flujo de un fluido, la presión, la densidad y la velocidad y dio su relación fundamental conocida ahora como El Principio de Bernoulli oTeoría Dinámica de los fluidos. En su libro también da una explicación teórica de la presión del gas en las paredes de un envase: «A lo largo de toda corriente fluida la energía total por la unidad de masa es constante, estando constituida por la suma de la presión, la energía cinética por unidad de volumen y la energía potencial igualmente por unidad de volumen».

Le concedieron, entre 1725 y 1749, diez premios por su trabajo en astronomía, gravedad, mareas, magnetismo, corrientes del océano y el comportamiento de una embarcación en el mar.

Daniel Bernoulli falleció el 17 de Marzo de 1782 en Basilea, Suiza.

viscosidad en los fluidos

Propiedad de un fluido que tiende a oponerse a su flujo cuando se le aplica una fuerza. Los fluidos de alta viscosidad presentan una cierta resistencia a fluir; los fluidos de baja viscosidad fluyen con facilidad. La fuerza con la que una capa de fluido en movimiento arrastra consigo a las capas adyacentes de fluido determina su viscosidad, que se mide con un recipiente (viscosímetro) que tiene un orificio de tamaño conocido en el fondo. La velocidad con la que el fluido sale por el orificio es una medida de su viscosidad.

La viscosidad de un fluido disminuye con la reducción de densidad que tiene lugar al aumentar la temperatura. En un fluido menos denso hay menos moléculas por unidad de volumen que puedan transferir impulso desde la capa en movimiento hasta la capa estacionaria. Esto, a su vez, afecta a la velocidad de las distintas capas. El momento se transfiere con más dificultad entre las capas, y la viscosidad disminuye. En algunos líquidos, el aumento de la velocidad molecular compensa la reducción de la densidad. Los aceites de silicona, por ejemplo, cambian muy poco su tendencia a fluir cuando cambia la temperatura, por lo que son muy útiles como lubricantes cuando una máquina está sometida a grandes cambios de temperatura.

 

HIDRODINAMICA

Esta rama de la mecánica de fluidos se ocupa de las leyes de los fluidos en movimiento; estas leyes son enormemente complejas, y aunque la hidrodinámica tiene una importancia práctica mayor que la hidrostática,sólo podemos tratar aquí algunos conceptos básicos.

Euler fue el primero en reconocer que las leyes dinámicas para los fluidos sólo pueden expresarse de forma relativamente sencilla si se supone que el fluido es incompresible e ideal, es decir, si se pueden despreciar los efectos del rozamiento y la viscosidad. Sin embargo, como esto nunca es así en el caso de los fluidos reales en movimiento, los resultados de dicho análisis sólo pueden servir como estimación para flujos en los que los efectos de la viscosidad son pequeños.

Flujos incompresibles y sin rozamiento

Estos flujos cumplen el llamado teorema de Bernoulli, que afirma que la energía mecánica total de un flujo incompresible y no viscoso (sin rozamiento) es constante a lo largo de una línea de corriente. Las líneas de corriente son líneas de flujo imaginarias que siempre son paralelas a la dirección del flujo en cada punto, y en el caso de flujo uniforme coinciden con la trayectoria de las partículas individuales de fluido. El teorema de Bernoulli implica una relación entre los efectos de la presión, la velocidad y la gravedad, e indica que la velocidad aumenta cuando la presión disminuye. Este principio es importante para predecir la fuerza de sustentación de un ala en vuelo.

Ecuación de continuidad: (para flujo estacionario e incompresible, sin fuentes ni sumideros, por evaluarse a lo largo de una línea de corriente).

1) Ley de conservación de la masa en la dinámica de los fluidos:

A1.v1 = A2.v2 = constante.

Ley de conservación de la masa en la dinámica de los fluidos

Recordar que p = F/A ⇒F = p.A

Flujo de volúmen: (caudal).

Φ = A .v [m³/s]

Ecuación de Bernoulli: (principio de conservación de la energía) para flujo ideal (sin fricción).

p1 + δ.v1²/2 + δ.g.h1 = p2 + δ.v2²/2 + δ.g.h2 = constante

p1/δ + v1²/2 + g.h1 = p2/δ + v2²/2 + g.h2

p/ δ = energía de presión por unidad de masa.

g.h = energía potencial por unidad de masa.

v²/2 = energía cinética por unidad de masa.

Ecuación de Bernoulli para flujo en reposo: v1 = v2 = 0

p1 + δ.g.h1 = p2 + δ.g.h2

BIOGRAFIA :)

Evangelista Torricelli

(Faenza, actual Italia, 1608-Florencia, 1647) Físico y matemático italiano. Se atribuye a Evangelista Torricelli la invención del barómetro. Asimismo, sus aportaciones a la geometría fueron determinantes en el desarrollo del cálculo integral.

Su tratado sobre mecánica De mutu (Acerca del movimiento), logró impresionar a Galileo, en quien el propio Torricelli se había inspirado a la hora de redactar la obra. En 1641 recibió una invitación para actuar como asistente de un ya anciano Galileo en Florencia, durante los que fueron los tres últimos meses de vida del célebre astrónomo de Pisa.


Torricelli

A la muerte de Galileo, Torricelli fue nombrado profesor de matemáticas de la Academia Florentina. Dos años más tarde, atendiendo una sugerencia formulada por Galileo, llenó con mercurio un tubo de vidrio de 1,2 m de longitud, y lo invirtió sobre un plato; comprobó entonces que el mercurio no se escapaba, y observó que en el espacio existente por encima del metal se creaba el vacío.

Tras muchas observaciones, concluyó que las variaciones en la altura de la columna de mercurio se deben a cambios en la presión atmosférica. Nunca llegó a publicar estas conclusiones, dado que se entregó de lleno al estudio de la matemática pura, incluyendo en su labor cálculos sobre la cicloide y otras figuras geométricas complejas.

En su título Opera geometrica, publicado en 1644, expuso también sus hallazgos sobre fenómenos de mecánica de fluidos y sobre el movimiento de proyectiles.

TOME NOTA¡¡¡

¿CUAL ES LA MASA O EL PESO DE LA ATMÓSFERA?

El peso total de la atmósfera terrestre es de 5,3 x 10 18 kg. Un centímetro cuadrado colocado a nivel del mar recibe un peso de, aproximadamente, 1 kg. Aproximadamente el 90 % de la masa de aire atmosférico se encuentra por debajo de la altitud de 15 km, 99 % debajo de los 30 km y el 99,99% por debajo de los 48 km de la superficie terrestre.

¿CUAL ES EL ÁREA SUPERFICIAL DE LA TIERRA?

510.072.000 km²

IDEAS COMPLEMENTARIAS CLASE 13 DE FEBRERO

PRESIÓN 

Cuando se ejerce una fuerza sobre un cuerpo deformable, los efectos que provoca dependen no sólo de su intensidad, sino también de cómo esté repartida sobre la superficie del cuerpo.

Así, un golpe de martillo sobre un clavo bien afilado hace que penetre mas en la pared de lo que lo haría otro clavo sin punta que recibiera el mismo impacto. Un individuo situado de puntillas sobre una capa de nieve blanda se hunde, en tanto que otro de igual peso que calce raquetas, al repartir la fuerza sobre una mayor superficie, puede caminar sin dificultad.


La presión depende no sólo de la magnitud de la fuerza, sino de la superficie sobre la cual se ejerce dicha fuerza. Un clavo afilado penetra más que otro, recibiendo los dos el mismo golpe de martillo

El cociente entre la intensidad F de la fuerza aplicada perpendicularmente sobre una superficie dada y el área S de dicha superficie se denomina presión:


(5.4
)

La presión representa la intensidad de la fuerza que se ejerce sobre cada unidad de área de la superficie considerada. Cuanto mayor sea la fuerza que actúa sobre una superficie dada, mayor será la presión, y cuanto menor sea la superficie para una fuerza dada, mayor será entonces la presión resultante.

La presión en los fluidos

Cuando un fluido está contenido en un recipiente, ejerce una fuerza sobre sus paredes y, por tanto, puede hablarse también de presión. Si el fluido está en equilibrio las fuerzas sobre las paredes son perpendiculares a cada porción de superficie del recipiente, ya que de no serlo existirían componentes paralelas que provocarían el desplazamiento de la masa de fluido en contra de la hipótesis de equilibrio. La orientación de la superficie determina la dirección de la fuerza de presión, por lo que el cociente de ambas, que es precisamente la presión, resulta independiente de la dirección; se trata entonces de una magnitud escalar.

Unidades de presión

En el SI la unidad de presión es el pascal, se representa por Pa y se define como la presión correspondiente a una fuerza de un newton de intensidad actuando perpendicularmente sobre una superficie plana de un metro cuadrado. 1 Pa equivale, por tanto, a 1 N/m2.

Existen, no obstante, otras unidades de presión que sin corresponder a ningún sistema de unidades en particular han sido consagradas por el uso y se siguen usando en la actualidad junto con el pascal. Entre ellas se encuentran la atmósfera y el bar.

La atmósfera (atm) se define como la presión que a 0 C ejercería el peso de una columna de mercurio de 76 cm de altura y 1 cm2 de sección sobre su base.

Es posible calcular su equivalencia en N/m2 sabiendo que la densidad del mercurio es igual a 13,6 · 103 kg/m3 y recurriendo a las siguientes relaciones entre magnitudes:

Peso (N) = masa (kg) · 9,8 m/s2
Masa = volumen · densidad

Como el volumen del cilindro que forma la columna es igual a la superficie de la base por la altura, se tendrá:

es decir:

1 atm = 1,013 · 105 Pa.

El bar es realmente un múltiple del pascal y equivale a 105 N/m2. En meteorología se emplea con frecuencia el milibar (mb) o milésima parte del bar · 1 mb = 102 Pa.

1 atm = 1 013 mb